
Dynamic Merge for WebWorks

Help 5.0

Introduction
The Problem
While the “Out of Memory” error of earlier versions has largely been eliminated in
ePublisher 9.3, very large projects are still seeing their share of problems. In nearly all
cases, system memory becomes an issue in the Page pipeline, when ePublisher is
generating all of the HTML files required to complete a format conversion. The number
of HTML files created depends on the total number of input documents, and—more
specifically—the total number of page splits within those documents. There is no exact
limit, but it seems like projects with 50+ documents and several hundred page splits are at
risk of exhausting the available RAM.

The problem isn’t really the number of files being created, though. The current
understanding is that memory more likely is drained by the processes of tracking all of
the files associated with a project, complete with lengthy path names, complex attributes,
and multiple dependencies. During the conversion, ePublisher maintains all of this
information for each project group in a file in the Data directory called files.info.

As the number of groups and documents increases, so does the size of each files.info.
Then the conversion starts. WIF, XML, PostScript, images, CSS, HTML…every file
created as part of the ePublisher conversion process is logged in the Data file and stored
in the system memory. In very large projects with many page splits, the size of files.info
skyrockets in the Page pipeline. Eventually, ePublisher uses up all of the available
memory and the system (no matter how much RAM) throws a warning. In ePublisher
9.2.2, this warning signaled the end of the conversion with the fatal “Out of memory
exception” error.

We worked around this issue with ePublisher 9.3 by building in some intelligence to look
for that error before it shuts down the conversion. When the system warns that it is out of
memory, ePublisher stops what it is doing and restarts the current process from the
beginning. It may jump back to the beginning of the Page pipeline or the beginning of
the group that it was processing when the limit was reached. The idea was that it could
clear up the memory being wasted and make more progress after the restart. What seems
to be happening is that progress (or enough progress) is not made. You’ll often see
projects stuck in the Page pipeline after many hours of processing. The application has
not frozen, but it is forced to keep restarting and attempting the same process over and
over without success. It might make a few extra steps each time, and it may eventually

finish, but the Platform loses its usefulness (its quickness, flexibility, and efficiency)
when it functions like this. It’s just not the way ePublisher was intended to perform.

So, while our engineers work on a built-in solution to this problem for the next release,
we offer this external workaround to help ease the pressure felt by many users with very
large projects.

The Solution

A script was developed to allow the merge of multiple WebWorks Help 5.0 output
directories into a single helpset. In a typical project with multiple groups, we create an
individual helpset for each group, and then we run a final process to combine the groups
into a single merged helpset with a combined TOC and Index. That’s really what we’ll
be doing here. We will take several multi-volume helpsets, and we will run a script that
will allow a user to view them all as a combined, cohesive unit. You will have the ability
to define the sort order of the TOC entries, and you can even modify the file system
organization.

This should help to resolve the memory issue by allowing you to create several smaller
projects that each generate output without hitting the limits of your system’s memory.
Then, with this post-process script, you can combine the output of each of those projects
in a single directory, as if they had all been generated simultaneously. It requires some
work to get things configured and working correctly, but it should give you the results
you need to deliver your complete project output.

Using Dynamic Merge
How It Works
Creating merged WebWorks Help 5.0 output does not require the creation of many new
files and directories. Rather, it reconfigures existing files in a directory so that each
knows the others exist. It also defines the relationships between the child groups so that
the features of the merged helpset reflect the contents of all of those groups. For
example, a new TOC is not created; but, if the top-level files know that the child groups
exist, the tables of contents of those groups can be combined on-the-fly to display a
merged TOC to the user at runtime.

Set it up
If your current project is stalling in the Page pipeline or takes an unreasonable amount of
time to finish converting output, you’ll want to start by breaking it into smaller, more
manageable projects. Start with your stationery, and create several new ePublisher
Express publication projects, each with a subset of the total number of groups and
documents. Generate output for each of the projects, ensuring that they all complete the
process successfully. If one of the smaller projects stalls, then break it down into smaller

parts. If necessary, you can go as far as to place a single group in each project. There is
no limit to the number of groups or projects you can merge.

It is important to note, though, that content will appear in the merged helpset exactly as it
does in the output from the individual projects. Specifically, the main drawback of this
strategy is that cross-references between groups that have been broken into separate
projects will not be resolved in the merged output. For example, if a document in
Group A of Project 1 links to a document in Group C of Project 1, the link will be
preserved. If that document references a file in Group F of Project 2, that link will not be
resolved in the output.

Collect the Output
When the output for all of the projects has been generated, you will need to copy all of
the group-level folders into a single empty directory. In each project folder, you typically
have an Output folder, a target-level folder within that, and then a top-level index file (if
there are multiple groups) alongside a separate folder for each of the project’s groups.
You want to gather each of these group folders and place them all together in a common
directory of your choosing (as if they had all been generated from the same project).

Next, copy the top-level index.html file and wwhelp directory from the Output
folder of one of the projects (it doesn’t matter which).

Configure the Merge Files
In the wwhdata folder of any group’s output, you’ll find a file called info.txt. In most
cases, the file is empty. But, you can use this file to configure the order and structure of
your final merged table of contents—much as you would with the GUI’s Merge Settings.
These settings are optional, but an info.txt file is required for each group to be
merged properly.

The first two lines of the text file are used for this purpose. The first line may contain a
number representing its relative position among all of the merged groups. For example,
if the info.txt file for Group A shows the number 20, and the number for Group B is
15, then the topics and TOC books for Group B will be positioned before those of Group
A in the merged helpset.

The second line can be used optionally to define additional parent books in the TOC. By
default, a top-level book will be created in the TOC representing each group folder found
by the script. By providing a path in line 2 of info.txt, you can add books to the
TOC that will contain the active group’s book. That is, if you add “New/Child” to the
info.txt file of Group B, then that group’s main TOC book will be nested within a
book called “Child,” which in turn will be shown below a top-level book called “New.”

Using Markers
After generating and collecting the output for each of your groups, you may configure the
info.txt sort order setting manually for each group. However, this can become
tedious if you have a lot of groups (which is likely the case if you are experiencing
memory issues). Each time you generate output, though, a new, blank info.txt file will be
created, and you don’t want to have to modify the files each time you update your
content.

In ePublisher 9.3, we added two new marker behavior settings to make this process
easier. You can now use custom markers in your input documents to specify the sort
order and group hierarchy. To use this feature, just add one instance of each marker (or
at least one with a sort order integer) to each group. If Group A contains 2 FrameMaker
books representing 16 documents, you need just one sort order marker in one of those
documents to define the info.txt contents for that group. If Group A is to be nested
within new books in the output TOC, then you’ll need one additional marker in one of the
group’s documents to record that setting as well.

Like most of the markers used by ePublisher, you can give the markers any name you
like. Just be sure to add the marker name to the Master Project’s Style Designer, and
choose the appropriate Marker Type value from the list provided. For example, you
might create a marker called SortOrder. In context, the SortOrder marker for Group A
might contain the number 20. On the Style Designer’s Marker Styles tab, you will scan
your document or manually add the SortOrder marker, and then choose “WebWorks Help
Merge Order” from the Marker Type value list. You might also add a new marker called
“MergeFolders” to represent any top-level parent folders under which to nest some of
your merged groups. For Group A, the marker text might be “New/Child.” If you add
the MergeFolders marker to the Style Designer and specify the “WebWorks Help Merge
Grouping” type, then the info.txt file for Group A will automatically be populated
with a “20” on the first line, and “New/Child” on the second line.

Execute the Script
With all of the group output folders collected in a common directory alongside the
index.html file and wwhhelp folder from one of them, and an info.txt file
configured for each of the groups, you are ready to merge. You’ll want to execute the
script from the Windows Command Line Interface. Click Start, choose Run…, type
“cmd” and click OK to open the CLI. From the command line, navigate to (or just type)
the path to your saved copy of wwh5merge.vbs. You will execute the script with a single
argument: the path to the directory containing your collection of group output folders.
The script will scan the directory for constituent groups and their info.txt files. It
will then reconfigure the files in the common wwhelp directory so that the top-level
index.html file will launch a combined WebWorks Help 5.0 helpset representing all
of the individual groups, complete with a merged TOC and Index. A message will
appear each time a folder is found and added to the merged helpset. The process
shouldn’t take much time at all, since no new files are created, and none of the individual
HTML topic files needs to be processed. When the script completes its actions, the

directory will contain everything you need to deliver a complete merged helpset with all
of the output from your separate projects.

Automate the Merge

Once you understand the basics of the Dynamic Merge behavior, you can merge more
efficiently by using AutoMap to generate output, and by configuring a batch file to
collect the output files and execute the merge script for you.

The Dynamic Merge example here includes a batch file (run.bat) representing one option
for this kind of automation. It contains a list of commands that use AutoMap to generate
output for each of the small Express projects. The output for each one is deployed to a
common “output” folder. The index.html file and wwhelp folder from the first
output are copied to the root level of the output folder. Then, the merge script is
executed. It scans the collective output folder, finds the individual groups with their
marker-configured info.txt files, and merges everything into a single cohesive
helpset, accessible via the top-level index.html file. When the batch is complete, the
contents of the new output folder are ready for distribution as a merged WebWorks
Help 5.0 helpset.

Conclusion
The memory allocation error is a problem that is high on the priority list of issues to be
addressed in a future ePublisher release. The Dynamic Merge add-on for WebWorks
Help 5.0 represents a stop-gap solution for users who must generate WWH5 output for
very large projects prior to the public availability of that fix. The loss of inter-group
cross-references is acknowledged as a significant disadvantage, and the script is only
available for WebWorks Help 5.0 projects; however, if you need to generate output for a
large project that won’t work otherwise, this workaround will allow you to move forward
with your project ahead of your deadlines.

	Introduction
	The Problem
	The Solution

	Using Dynamic Merge
	How It Works
	Set it up
	Collect the Output
	Configure the Merge Files
	Using Markers
	Execute the Script
	Automate the Merge

	Conclusion

