
1

Developer’s Guide

Introduction
Welcome to the Quadralay’s Developer’s Guide for WebWorks ePublisher Pro.
This document serves as an overview of how ePublisher Pro works and provides
details on how the user can make changes to files to customize both the process
of converting a document, and the document’s final appearance.

Audience

This document is aimed at users of ePublisher Pro who want to make specific
customizations to their projects. Users should have at least basic knowledge of
XML, XSLT, and how the two interact. This guide presents a brief overview of
XML and XSL. If the concepts there present confusion to the user, the references
section provides resources for learning critical features of the languages.

Help

User changes to ePublisher Pro files are not supported through Quadralay’s
Product Support department. Modification of files is only supported through
Quadralay’s Services department. Modifying files in the installation directories is
not recommended. Files should be modified in a project itself or in user-created
formats only.

Conventions

This Reference Guide uses the following conventions.

Developer’s Guide

2 Developer’s Guide

Formatting

Bold: File names are listed in bold

Code: Highlights markup text used in XML.

Terminology

GUI: A graphical user interface is a method for issuing commands to a computer
through direct manipulation of graphical images and widgets in addition to text.
The buttons and menus used in Microsoft Word are an example of a GUI.

Output Target: The chosen format to which a source document will be
transformed. There may be more than one output target.

Source Document: The original document, created in Word or Framemaker, that
will be transformed by ePublisher Pro to an output target.

Transform: The process of converting a source document into a new chosen
format.

Organization

This book is separated into seven parts:

• Introduction

• Architecture Overview: Details regarding how ePublisher Pro works

• XSL Match Templates: ePublisher Pro’s unique approach to template rule
matching

• Extension Objects: Details on extending the functionality of XSL with
Microsoft and ePublisher Pro extension objects

• File Reference: Details on files the user may modify

• Project Format Overrides: How to get started

• Appendix: Extension Objects: General, Microsoft, and ePublisher Pro
extensions

Developer’s Guide

Developer’s Guide 3

About XML and XSL

XML is a meta-language. That is, it is a language used to create other markup
languages. XML provides a basic structure and a set of rules to which any
markup language must adhere. XML is based on three basic building blocks:

• elements

• attributes

• values

Elements describe or contain a piece of information and form the basis of all
XML documents. Elements take the form of tags, as in HTML. Attributes are
pieces of descriptive information that appear within an elements opening tag. An
attribute consists of an attribute name and a corresponding value, separated by an
equal symbol (=). The values of an attribute appear to the right of the equal
symbol and must appear within quotes.

Together, a group of elements, attributes, and values make up an XML document.

XML allows users to create elements, attributes and values. There are no fixed
elements as in HTML. In HTML <table> means only information grouped
together in rows and columns. In XML, an element with the name <table> could
refer to an HTML type table, or a piece of furniture, or whatever the author
would like. In order to bring order to these seemingly randomly-named elements,
XML needs a document that explains what each of these building blocks mean.
The document that defines these building blocks is called an XSL style sheet. A
rough comparison can be made to Custom Style Sheets, used in HTML.

ePublisher uses two different aspects of XSL to generate an output:

• XSLT: XSLT describes how to transform a source document from one
markup language to another.

• XPath: XPath is used by XSLT to select parts of XML to process and perform
calculations.

Developer’s Guide

4 Developer’s Guide

An XSLT processor executes a stylesheet to give the user a particular result. In
the transformation process, XPath defines parts of the source document for XSLT
to match against one or more predefined templates. When a match is found,
XSLT will transform the matching part of the source document into the result
document.

References

ePublisher Pro users unfamiliar with XML or XSLT may want to check out the
following resources:

Books
• SAMS Teach Yourself XML in 24 Hours, by Michael Morrison, published by

SAMS publishing

• Beginning XSLT, by Jeni Tennison, published by Apress

• XML for Dummies, by Lucinda Dykes, Ed Tittel, published by Hungry
Minds

• XSLT for Dummies, by Richard Wagner, published by Hungry Minds

Websites
• www.w3.org/XML: The World Wide Web Consortium (W3C) “develops

technologies to lead the Web to its full potential. W3C is a forum for
information, commerce, communication, and collective understanding.”

• xml.com: Commercial site with the mission to help the user “discover XML
and learn how this Internet technology can solve real-world problems in
information management and electronic commerce.”

• www.w3schools.com: An ad-supported site with free tutorials on a number of
web-based technologies.

Developer’s Guide

Developer’s Guide 5

Architectural Overview
ePublisher Pro converts a source document to an output target by breaking the
process into a series of steps, or “stages.” Each stage performs a specific action in
the process. These steps are grouped in “pipelines” of related stages. See Figure 1
for an illustration.

Figure 1: Relationship Between Stages and Pipelines

The first pipeline in the process prepares the source document to be converted by
XSL. ePublisher Pro uses XSL to transform documents to target formats. XSL,
however, cannot extract XML from Word or Framemaker documents, nor can it
render images. This first stage applies conditions and variables, extracts native
drawings and images, and exports the source document to WIF (WebWorks
Intermediate Format), a WebWorks proprietary XML language that enables XSL
to process the source document in later stages.

Developer’s Guide

6 Developer’s Guide

Once source documents are transformed into WIF, XSL processing can begin.
ePublisher Pro processes files based on type rather than by name. Each stage
defines an .xsl file to be executed which creates a portion of the output target.
When every stage in every pipeline has been executed, the transform is complete.

Real World Example

For the sake of demonstrating the ePublisher Pro transform process let us assume
a fictional pizzeria in New York City. Further, we’ll say that a bag of pizza
ingredients in the refrigerator is our source document. While that bag of
ingredients is perfectly nice, it isn’t particularly useful to anyone. The chef needs
to transform the ingredients into something useful to him, a cooked pizza. In
ePublisher Pro, the ingredients are our source document, the pizza oven is XSL,
and the cooked pizza is our output target.

Unfortunately, it isn’t possible simply to throw the ingredients into the oven and
then remove a pizza ten minutes later. The bag of ingredients must first be
prepared so the oven can deal with the ingredients in a way that is useful to us. In
ePublisher Pro, the process of rolling out the dough, and spreading the sauce and
cheese is the first stage where a source document is prepared for XSL (the oven)
to do it’s job.

Experienced chefs understand that the cooking process is a series of chemical
reactions of food to heat. The dough becomes crisp, the cheese melts, etc. The
process creates what any reasonable person would define as a pizza. In
ePublisher Pro, XSL (the oven) is applying a series of steps (cooking) that are
changing our source document (uncooked pizza) into the output target
(something the customer is willing to consume).

Just as the pizza chef can customize the pizza ingredients any number of ways,
such as cooking the pizza longer or at a different temperature to get different
results, the ePublisher Pro user may customize the XSL process to affect his
source document.

Developer’s Guide

Developer’s Guide 7

File Reference
This section provides basic information on the ePublisher Pro files used in the
transform process. This is where the user can make changes to the process to
customize his output. In our real life example, this is where the chef can make his
crust extra crisp, or add pepperoni or anchovies.

File Locations

There are two locations to keep in mind when planning to modify a file:

• ePublisher Pro installation directory: By default, ePublisher Pro is installed in
C:\Program Files\WebWorks\ePublisher Pro.

• Project directory: By default, a project is saved in “My Documents >
ePublisher Pro Projects” in a directory with the same name as the project
itself. See Figure 2.

Figure 2: Project Directory Folder Hierarchy

Developer’s Guide

8 Developer’s Guide

When output is generated for a given output format, the ePublisher Pro engine
first looks in the Project directory for the files required to complete its task. If the
necessary files are not found in the Project directory, the engine will look in the
installation directory. This means that any file contained in the installation
directory hierarchy may be overridden in a given format by placing a file with the
same name at the correct location in the Project directory. See the procedure
detailed in “Creating Project Format Overrides” for more information.

Note: Modifying files in the installation directories is not recommended. Files
should be modified in the project itself only.

The files used to transform a source document are located in three main folders in
the ePublisher Pro installation directory:

• Transforms: This folder contains XSL documents which are used by all
formats

• Formats: This folder contains format-specific XSL documents. Files to be
modified by the user are located here.

• Helpers: This folder contains command line programs to perform some action
(i.e., compiling .CHMs or generating WWHelp search indices)

Real World Example

Let us revisit our pizzeria in New York City. For the sake of this example, let’s
pretend that once the chef makes a pizza, he completely forgets the process of
how to do it. Luckily, the owner has placed the directions on the wall where the
chef rolls out the dough. The chef quickly learns to check the wall to see what he
is supposed to do next.

Now, sometimes, the customer wants thin crust. Or extra cheese. The instructions
on the wall only tell the chef how to make one kind of crust, and only a certain
amount of cheese. In order to make sure the chef makes the pizza the way the
customer wants it, after receiving the order, the owner places instructions on the
bag of ingredients the chef retrieves from the refrigerator. The owner tells the
chef to always check the bag for instructions first. If there are no instructions on
the bag, the chef should simply follow the directions posted on the wall.

Developer’s Guide

Developer’s Guide 9

In ePublisher Pro, the Project directory is the instructions posted on each bag.
The pizza chef knows to check the bag (the project folder) first for instructions,
then to check the instructions on the wall (the installation directory) if there are
no instructions on the bag.

File Processing

As mentioned previously, ePublisher Pro breaks up the transform process into a
series of pipelines, or groups of similar stages. Each stage defines an .xsl file to
be executed which creates a portion of the output target. ePublisher Pro uses a
combination of the Format's Pipelines, the GlobalFiles record (files.info), XSLT
parameters and the root match template in a given XSL file to perform the action
to be executed in a stage. These stages are defined in the format.wwfmt file
located in each Format directory. The format.wwfmt file defines all of the
pipelines and steps necessary to create a given output, and the relationships that
each of these have to one another. There is no preconceived order in which
pipelines fire; the ePublisher Pro engine calculates at run time the order in which
each pipeline will fire, based on pipeline dependencies.

ePublisher Pro processes files based on type rather than by name. Each stage
defines an .xsl file to be executed which creates a portion of the output target. All
ePublisher Pro XSL stylesheets define four parameters by default. These are as
follows:

• GlobalFiles – A project's files.info

• GlobalProject – The project file (*.wep)

• GlobalPipelineName – The pipeline of the current stage.

• GlobalInput – The files selected in the Document Manager.

In addition, XSL stylesheets are passed all parameters defined for the current
stage in format.wwfmt. Parameters passed to each XSLT file are usually used to
load the various XML node sets needed for the current stage. For example, a
stage may need to take information recorded in the Behaviors pipeline and merge
it with information in the Links pipeline. The location of information generated

Developer’s Guide

10 Developer’s Guide

in each stage is stored in the files.info file. Future stages may consult files.info to
learn the location of previously generated information needed to complete that
particular stage. Similarly, when that stage is complete, it will send notice to the
files.info file that the information it has created is available for future stages to
use if necessary.

What This Means For The User

Processing files based on type rather than by individual names allows developers
to define workflows for any number of input-output files. This allows users to
define as many XSL stages as they like and each stage may make use of any
preceding file generated. Users may create or delete pipelines, add or delete
stages, or insert elements that will dictate when a stage or pipeline is executed.

File Types
The section provides specific information about the files most commonly used in
customization of ePublisher Pro.

Format Trait Info (*.fti)

Format Trait Info files end in the .fti extension. Format Trait Info files are located
in both the ePublisher Pro Transforms directory, and the format directories of
each output target.

Explanation

In every project, the user has a series of format and style options to customize the
appearance of his output. In the GUI, these options can be accessed and
manipulated through Format Settings and Style Designer on the ePublisher Pro
toolbar. For the ePublisher Pro engine, these customization options reside in the
Format Trait Info (*.fti) files. Manipulating these files allows for customizing the
location of options, creating or deleting options and parameters, or adjusting their
values, or choosing a new default value.

Developer’s Guide

Developer’s Guide 11

Format Trait Info files must have the same base file name (that is, the file name
without the file extension) as an XSL file in the current format in order to be
processed by ePublisher Pro. The information displayed in the ePublisher GUI
represents all Format Trait Info files associated with a given format. So, two or
more Format Trait Info files may define a <Setting /> but would only be
displayed once in the GUI.

When ePublisher Pro is generating output, the settings specified in Format
Settings and Style Designer are consulted, stored in the project file (.wep) and
incorporated in the final generation of output.

Components

There are four elements in an Format Trait Info (.fti) file.

<Classes>—The only child element in <Classes> is <Class>. <Class> has
a child element of <Item>. See Example 1 for sample code.

To facilitate organization, values for a given option may be grouped together as
<Items> in a <class>. The <Class> element can then be applied in the
<Settings> and <RuleTraitsSet> elements to declare the options available
for that specific option.

 <Classes>
 <Class name="boolean">
 <Item value="true" stringid="boolean-true" />
 <Item value="false" stringid="boolean-false" />
 </Class>
 <Class name="color-name">
 <Item value="transparent" />
 <Item value="aqua" />
 <Item value="black" />
 <Item value="white" />
 <Item value="yellow" />
 </Class>
</Classes>

Example 1: Sample Code Illustrating Child Elements,
Attributes, and Values in the <Classes> Element

Developer’s Guide

12 Developer’s Guide

<Groups>—The only child element to <Groups> is <Group>. The <Groups>
element defines items that can be used to group properties available in the Style
Designer. Users can create groups and apply the group element tag in the
appropriate location in the <Settings> and <RuleTraitsSet> elements of the
Format Trait Info (.fti) file. This will assemble all <Settings> with a similar
group together in the appropriate section of the GUI.

<Settings>—The only child element of the <Settings> element is
<Setting>. The <Setting> element defines the parameters for the GUI’s
Format Settings button. A user may customize the format settings by making
changes in this portion of the Format Trait Info (.fti) file.

<RuleTraitsSet>—The only child element of the <RuleTraitsSet>
element is <Options>. <Options> contains the child element <option>. See
Example 2 for sample code.

The <option> element defines the parameters for the GUI’s Properties and
Options Tabs in the Style Designer. A user may customize the Style Designer by
making changes in this portion of the Format Trait Info (.fti) file.

<RuleTraitsSet>
 <RuleTraits category="Graphic">
 <Options>
 <Option name="file-extension" group="options"
default=".jpg">
 <OptionClass name="file-extension" />
 </Option>
 <Option name="format" group="options" default="jpeg">
 <OptionClass name="image-format" />
 </Option>
 <Option name="color-depth" group="options" default="24">
 <OptionClass name="color-depth" />
 </Option>
 </Options>
 </RuleTraits>
 </RuleTraitsSet>

Example 2: Sample Code Illustrating Child Elements,
Attributes, and Values in the <RuleTraitsSet> Element

Developer’s Guide

Developer’s Guide 13

Relationships

Format Trait Info appears in the ePublisher Pro user interface. When a user
effects changes to these setting through the user interface, those changes are
written to the project file (*.wep). A format’s XSL transformations then have
access to these values by reading the project file.

format.wwfmt

format.wwfmt files are located in the specific format directories.

Explanation

The format.wwfmt file defines all of the steps necessary to create output, and the
relationships that each of these steps has to one another. These steps, called
“stages” are grouped in “pipelines” of related stages. When every stage of every
pipeline has been executed, the ePublisher Pro engine output is complete. There
is no preconceived order in which pipelines fire; the ePublisher Pro engine
calculates at run time the order in which each pipeline will fire. Users may create
or delete pipelines, add or delete stages, or insert a <Depends /> element that will
dictates when a stage or pipeline is executed.

Components

The root element of format.wwfmt is <Format />. The child elements are
<Pipelines> and <Capabilities>. See example 3 for sample code.

• <Pipelines>: The <Pipelines> element is a container element for the
<Pipeline> elements that define the steps needed to generate the format.
The only child element of the <Pipelines> element is <Pipeline>.

■ <Pipeline>: The <Pipeline> element is a container element for the
<Depends> and <Stage> elements which comprise a given segment of
output files needed to generate a format. This element requires a name attribute
so that it can be identified by <Depends> elements within other <Pipeline>
elements. The <Pipeline> element contains the following child elements:

Developer’s Guide

14 Developer’s Guide

– <Depends>: This element specifies which other <Pipeline> elements the
current <Pipeline> requires to complete its task. Including a <Depends>
elemen t in a pipeline is the only way to ensure a Pipeline does not execute
before another Pipeline on which it depends. The ePublisher Pro engine
calculates at run time the order in which each Pipeline will run.

– <Stage>: This element identifies an action to perform and specifies a
configuration for the action. The action is identified via the type and action
attributes, usually an XSL stylesheet, and the configuration is defined with
<Parameter> elements. These <parameter> elements define what is to
be worked on, what will be created, and what else should be done with the
result.

Note: With the exception of Global Files and GlobalProject, all
parameters passed to XSL transforms are strings. Global Files and
Global Project are node-sets which have already been loaded.

• <Capabilities>: The <Capabilities> element contains only the child
element <Capability> which defines information regarding what types of
technologies or features a format supports.

Developer’s Guide

Developer’s Guide 15

<Capabilities>
 <Capability name="merge-context" value="false" />
 ...
</Capabilities>
<Pipelines>
 <Pipeline name="CompanyInfo">
 <Stage type="xsl"
action="wwtransform:common/companyinfo/companyinfo.xsl">
 <!-- Pull in Company Info .fti file -->
 <!-- -->
 </Stage>
 </Pipeline>
 <Pipeline name="DocumentBehaviors">
 <Stage type="xsl"
action="wwtransform:common/behaviors/document.xsl">
 <Parameter name="ParameterDropDowns" value="false" />
 <Parameter name="ParameterPopups" value="false" />
 ...
 </Stage>
 <Stage type="xsl"
action="wwtransform:common/behaviors/pullup.xsl">
 <Parameter name="ParameterDropDowns" value="false" />
 <Parameter name="ParameterPopups" value="false" />
 ...
 </Stage>
 </Pipeline>
</Pipelines>

Example 3: Sample Code Illustrating Child Elements,
Attributes, and Values in the format.wwfmt file

Relationships

The locations of files generated by the action elements in the stages of the
format.wwfmt file are stored in files.info. The format.wwfmt draws the same
information from files.info as needed.

files.info

This file is created and stored with the project files.

Developer’s Guide

16 Developer’s Guide

Explanation

Each stage completes a small portion of the conversion. A completed stage
creates new information that will contribute to the appearance or functionality of
the new transform. Upon completion of the stage, the ePublisher Pro engine will
write the location of the processed information in the files.info file for use by
other stages attempting to complete their pipeline. Each stage may draw
information from files.info and deposit information for use by another stage.

Components

The root element of files.info is <Files />. The child elements are <File>
and <Depends>.

The <File> element holds the location of the data created by a stage.

The <Depends> element notes the location of data on which that file is
dependent.

Relationships

This file stores the dependencies and locations of files created by the stages
defined in format.wwfmt. The ePublisher Pro engine will provide this list of
locations in order to process other stages in other pipelines.

Project File (.wep)

The project file (.wep) file is a collection of all the necessary information
required to create output. This includes all the source document, settings, options
and customizations created by the user or through the GUI.

Developer’s Guide

Developer’s Guide 17

Stationery File (.wsp)

.wsp is the extension used for stationery files. Stationery is a file based upon
configurations that have been made to a previous ePublisher Pro project. By
saving a project as stationery, all of the settings and customizations that you
captured in your project, including project format overrides, are automatically
implemented in any new projects based on the stationery.

XSL Match Templates
Stylesheets are made up of a number of templates, each of which defines what
the XSLT processor should do when it matches a particular node in the XML
source document. The XSLT processor populates the result document by
instantiating a sequence of templates. Instantiation of a template means that the
XSLT processor

• Copies any literal data from the template to the target

• Executes the XSLT instructions in the template

Templates are defined using the <xsl: template> element. The match attribute in
the <xsl:template> element indicates which parts of the source document should
be processed with the particular template.

Root Match Templates

Each XML document has a single root element. This element encloses all
following elements and is therefore the parent element to all the other elements.

When the XSLT processor applies a stylesheet to an XML document, it begins
processing with the root element of the XML source document. To process the
root element, the XSLT processor searches the stylesheet for a template rule that
matches the root element. A template rule matches the root element when the
value of the template's match attribute is "/".

Developer’s Guide

18 Developer’s Guide

If the user explicitly defined a template rule that matches the root element, the
XSLT processor finds it and implements that template to the entire XML
document. If the XSLT processor does not find an explicitly defined template
rule that matches the root element, the processor implements the default template
that matches the root element. Every stylesheet includes this default template.

Root Match Templates in ePublisher Pro

The root match template has a number of responsibilities in ePublisher Pro. They
are listed here:

• Recording Files and Dependencies

• Loading Node Sets

• Progress recording for the extension object that lives in the wwprogress
namespace.

• Up-to-Date checking on the projects output files.

• Writing output

Recording Files and Dependencies

All root match templates in ePublisher Pro XSL files begin and end with the
<wwfiles:Files></wwfiles:Files> elements. Within each root match
template, usually near the bottom are one or more <wwfiles:File> elements
which include one or more <wwfiles:Depends /> elements. The attributes in
these elements provide information about the file such as the path, and type.
Upon completion of a stage, the ePublisher Pro engine will write the location of
the processed information in the files.info file for use by other stages attempting
to complete their pipeline. Each stage may draw information from files.info and
deposit information for use by another stage.

Developer’s Guide

Developer’s Guide 19

Loading Node Sets

Another responsibility of the ePublisher Pro XSL root match template is to load
the node sets needed for the transformation. This is usually done by accessing
one or more <wwfiles:File /> elements from files.info, and using the path
attribute on each <wwfiles:File /> element together with the document()
or wwexsldoc:LoadXMLWithoutResolver extension object, to load the node
set for the transform. In most cases, the <wwfiles:File /> elements are
selected using an XSL parameter from the format.wwfmt file, or Stage in the
current Pipeline.

wwprogress

The wwprogress extension object sends messages to the ePublisher Pro progress
indicator. If a root match template is being applied over several documents in
several groups, then the number of documents or groups to be processed is
recorded using the Start method in the wwprogress namespace.

Notice that an operation registered with the wwprogress extension object has
concluded is initiated by using the End method.

Up-to-Date

The ePublisher Pro’s XSL file’s root match template also ensures whether files to
be processed are up to date. This is accomplished by passing attributes accepted
by the wwfilesext:UpToDate extension method.

Writing Output

If a file is determined to be not up to date, then a XSL template is called, with the
result then passed along with information regarding what type of output file is to
be written, to the wwexsldoc:Document() method for processing. If the output
is to contain XML or HTML elements, then it is necessary to use the
msxsl:node-set() method to make the contents of the variable behave as a
new XML fragment.

Developer’s Guide

20 Developer’s Guide

Real Life Example

Let’s return to our pizzeria. Our pizza chef, who forgets how to make a pizza
whenever he sets out to do so, has a set of rules he follows posted on the wall.
Sometimes, the owner pastes special instructions on the bag of ingredients. But
there are some rules that are never altered. The chef may be instructed every time
to wash his hands. Or not to smoke a cigarette while making a pizza. These rules
that he must make sure to follow every single time during the entire pizza
production process, are the equivalent of the root match template.

Extension Objects
While extremely powerful, XSL has many shortcomings when used to perform
system level scripting tasks. Operations such as working with files and advanced
string operations are not included in the standard XSL language.

XSL does provide a generic extension mechanism to add new features to the base
language. ePublisher Pro provides a standard set of extension objects which
enable XSL to generate all required formats.

XSL extensions live in a specific namespace. Users can define their own prefix to
associate with a given namespace, but in general sticking with a consistent
naming convention makes life easier.

Output Customizations
Presenting information in print form can involve very different presentation
decisions than displaying information in a web-friendly form. Display can vary
from one platform to another, or one format may have features unavailable in
another. In a transform performed by ePublisher Pro, the user can make several
customization choices through various GUI options. For example, Format
Settings may allow a user to specify whether a certain piece of information is

Developer’s Guide

Developer’s Guide 21

displayed, or how or where it is located on a page. The Style Designer allows the
user to customize any style in the document to appear a certain way. By creating
specific rules and conditions for how the document should appear when the
transform is complete the user can add functionality or information for specific
audiences, or make use of specific features of a given format.

By using XSL, ePublisher Pro allows the user to customize the process even
further. The user may make additions, deletions, or modifications to the XSL
files in ePublisher Pro to further customize the output. The user may even add,
remove, or modify options available in Format Settings and Style Designer.

Project Format Overrides
Users make decisions on a Project’s final output through the ePublisher Pro GUI.
Some project modifications, however, cannot be made through the GUI. In these
instances, the user may access the XSL files used by the ePublisher Pro engine,
make changes, and thereby generate the desired output. Users may even add,
modify or delete options in the GUI via Format Trait Info (.fti) overrides.

When output is generated for the first time, ePublisher Pro consults the
format.wwfmt file in the format directory that tracks which actions are to be
executed to generate the desired format. If there are no user customizations, all
the files consulted by format.wwfmt are in the Format or Applications
Transforms directories. By default, WebWorks ePublisher Pro will check a
project’s local directory for files before seeking the files from the installation
directory. Users can override files in the default format files by creating a mirror
directory structure within a given Project’s Target Override directory. By placing
a file of the same name at the correct location in the Project Target Override
directory, any file in a given format within the installation directory may be
overridden.

Creating Project Format Overrides

This procedure details the steps necessary to override a specific file and ensure
that all previous functionality remains intact.

Developer’s Guide

22 Developer’s Guide

Note: Changes to .xsl and Format Trait Info (.fti) files are not supported through
Quadralay’s Product Support department. Assistance with modifying these files
may be purchased through WebWorks Services.

Information about Overriding files

Modifying files in the installation directories is not recommended. Files should
be modified in the project itself only. See the following procedure for the steps
required to do this.

The file name nomenclature used in ePublisher Pro is case sensitive. Care should
be taken to ensure directories and files created by the user match the original
installation directory or file name exactly.

It is not necessary to copy any files into the project Formats directory that you are
not explicitly overriding.

Procedure

These steps may be taken with any of the files you need to modify inside the
Formats directory. This procedure assumes that ePublisher Pro has been installed
in the default directory, and that your ePublisher Pro projects are located in the
“My Documents” folder. If the user has installed ePublisher Pro somewhere else,
or stores projects somewhere else, remember to substitute those locations when
following the procedure.

1. In Windows, open your project folder. Create a new folder named “Formats.”

2. Open this new Formats directory.

3. Duplicate the folder hierarchy of the file you wish to modify. See Figure 2 for
the folder hierarchy necessary to modify the pages.xsl file in WebWorks Help
5.0. Substitute the correct folder and file name inside the Formats directory.

Developer’s Guide

Developer’s Guide 23

Figure 2: Folder Hierarchy Required To
Modify pages.xsl in WebWorks Help 5.0

4. Navigate to the file you wish to modify in the ePublisher Pro installation
directory.

5. Select and copy the file(s) you wish to override.

6. Navigate back to the Formats folder in the Projects directory created in steps
1-3.

7. Paste the file you copied from the installation directory into the folder created
in step 3.

8. Modify files as needed.

After you have made the modifications you wish to make to the file in your
project directory, save it, and the next time you click Generate in your ePublisher
Pro project, this file will automatically override the default file and the changes
you made will be incorporated into the output.

Note: When you save the ePublisher Pro project as Stationery, the project format
overrides you have created will be saved with your Stationery. This stationery
can then be used to create future projects.

Project Format Override Example

The steps illustrated below will walk a user through the process necessary to
override the default splash page for WebWorks Help 5.0.

Developer’s Guide

24 Developer’s Guide

This procedure assumes that ePublisher Pro has been installed in the default
directory, and that your ePublisher Pro projects are located in the “My
Documents” folder. If the installation directory is different, or if projects are
stores elsewhere, remember to substitute the correct locations when following the
example. Further, this procedure assumes that the project uses the Blue Lobby
theme. See “Creating Project Format Overrides” for general instructions on
creating a project format override.

1. Create or locate the file you intend to use to replace the default image. Name
this file splash.jpg.

2. Create the folder hierarchy listed under “Sample Project #2” in Figure 3.

Figure 3: Sample Folder Hierarchy For Location of splash.jpg
3. Place the new splash.jpg file in the images directory created in step 2.

4. Select Project > Generate All in ePublisher Pro. The new splash page will
appear when you launch the index.html file.

In order to avoid having to repeat customization steps for every project, the user
may save the project as stationery, to be applied to future work, saving the need
to duplicate the steps necessary to create the customization.

Appendix: Extension Objects

Developer’s Guide 25

Appendix: Extension
Objects

The WebWorks ePublisher engine uses XML, XSL, and XPath as the foundation
for all processing. While extremely powerful, XSL has many shortcomings when
used to perform system level scripting tasks. Operations such as working with
files and advanced string operations are not included in the standard XSL
language.

XSL does provide a generic extension mechanism to add new features to the base
language. WebWorks ePublisher provides a standard set of extension objects
which enable XSL to generate all required formats.

General XSL Extensions
XSL extensions live in a specific namespace. Users can define their own prefix to
associate with a given namespace, but in general sticking with a consistent
naming convention makes life easier.

For example, the XSL namespace is:

http://www.w3.org/1999/XSL/Transform

To define a prefix for it, one adds an XSL namespace declaration to your XSL
stylesheet:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
..
</xsl:stylesheet>

Now the desired namespace can be referenced just using a prefix rather than the
actual namespace. Therefore, the following two lines are equivalent:

<xsl:variable name="VarNew" select="'Hello'" />
<variable xmlns="http://www.w3.org/1999/XSL/Transform"
name="VarNew" select="'Hello'" />

Appendix: Extension Objects

26 Developer’s Guide

Microsoft's XSL transform implementation does not support extension elements
at this time. Therefore, methods must be called from within "select" contexts.

<xsl:value-of select="wwexsldoc:Document($VarResult,
$VarPath)" />
<xsl:variable name="VarDocumentWrite"
select="wwexsldoc:Document($VarResult, $VarPath)" />

Microsoft Extensions
Extension objects that are defined and implemented by Microsoft as part of the
.NET XSL transform runtime.

Microsoft XSLT

Purpose

Microsoft implemented additional methods not part of the XSLT 1.1 standard.
This work was done prior to the XSLT 2.0 and EXSLT specifications being
finalized.

Namespace

urn:schemas-microsoft-com:xslt

Prefix

msxsl

Method

msxsl:node-set(string textualXML):
Description—Converts textual XML into a node set in a new XML document.
Most often used to convert intermediate XML back into a working node set for
additional processing.

Returns—A node set equivalent to the provided textual XML.

Appendix: Extension Objects

Developer’s Guide 27

ePublisher Extensions
ePublisher implements a variety of extension objects to enable full processing of
desired output within the language of XSL.

Note: Optional parameters are marked with a * around them. The should render
as italic.

Adapters

Purpose

Provides methods to extract images and PDF files from source documents.

Namespace

urn:WebWorks-XSLT-Extension-Adapter

Prefix

wwadapter

Method

wwadapter:TemporaryLicense(string toolAdapterName):
Description—Determines if the requested tool adapter has a permanent or
temporary license.

Returns—Boolean.

wwadapter:GeneratePostScriptForImage(XPathNodeIterator
frameNodeIterator, string postScriptPath):
Description—Requests the tool adapter convert the specified document image
into a PostScript file for later processing.

Returns—Boolean.

Appendix: Extension Objects

28 Developer’s Guide

wwadapter:SetPDFPageNumberOffset(int pageNumberOffset):
Description—Sets the starting page number to use when generating a PDF.

Returns—Nothing.

wwadapter:AddToPDFPageNumberOffset(int
addToPageNumberOffset):
Description—Increases the starting PDF page number by the specified about
when generating a PDF.

Returns—Nothing.

wwadapter:GeneratePostScriptForPDF(string
originalDocumentPath, string conversionPDFDocumentPath,
bool singleFile, node-set tocStylesNodeSet, node-set
groupFilesNodeSet, string postScriptFilePath):
Description—Saves the specified conversion document into PDF format.

Returns—Number of pages in the PDF.

Environment

Purpose

Enable XSL transforms to query the current system environment for the location
and state of programs and variables.

Namespace

urn:WebWorks-XSLT-Extension-Environment

Prefix

wwenv

Appendix: Extension Objects

Developer’s Guide 29

Method

wwenv:GetTotalMemory():
Description—Reports the total amount of memory used by the running process.
Useful for optimizing XSL to reduce memory usage.

Returns—Number of bytes.

wwenv:JDKHome():
Description—Determines the path to the default Java Developer Kit install
directory.

Returns—Platform path as string.

Exec

Purpose

Allows XSL stylesheets to execute external programs and process results.

Namespace

urn:WebWorks-XSLT-Extension-Execute

Prefix

wwexec

Returns

Exec XML Document.

Namespace

urn:WebWorks-XSLT-Extension-Execute

Appendix: Extension Objects

30 Developer’s Guide

Prefix

wwexec

Format

Provides the return code, stdout, and stderr results from the running
process.

<wwexec:Result version="1.0" retcode="-1">
 <wwexec:Stream name="Output">
 Standard output will show up here, aka stdout.
 </wwexec:Stream>
 <wwexec:Stream name="Error">
 Standard error will show up here, aka stderr.
 </wwexec:Stream>
</wwexec:Result>

Method

wwexec:Execute(string commandLine):
Description—Runs the command line using the current target's output directory
as the working directory.

Returns—Exec XML Document

wwexec:ExecuteInDirectory(string directoryPath, string
commandLine):
Description—Runs the command line in the specified working directory.

Returns—Exec XML Document

wwexec:ExecuteProgramWithArguments(string program, string
arguments):
Description—Runs the specified program with arguments formatted as a string
using the current target's output directory as the working directory.

Returns—Exec XML Document

Appendix: Extension Objects

Developer’s Guide 31

wwexec:ExecuteProgramWithArgumentsInDirectory(string
directoryPath, string program, string arguments):
Description—Runs the specified program with arguments formatted as a string
in the specified working directory.

Returns—Exec XML Document

wwexec:ExecuteCommand(string command, string argument1,
string argument2, string argument3, string argument4, string
argument5, string argument6, string argument7, string
argument8, string argument9, string argument10, string
argument11, string argument12, string argument13, string
argument14, string argument15, string argument16, string
argument17, string argument18, string argument19, string
argument20):
Description—Runs the specified program with zero or more arguments using
the current target's output directory as the working directory.

Returns—Exec XML Document

wwexec:ExecuteCommandInDirectory(string directoryPath,
string command, string argument1, string argument2, string
argument3, string argument4, string argument5, string
argument6, string argument7, string argument8, string
argument9, string argument10, string argument11, string
argument12, string argument13, string argument14, string
argument15, string argument16, string argument17, string
argument18, string argument19, string argument20):
Description—Runs the specified program with zero or more arguments in the
specified working directory.

Returns—Exec XML Document

ExslDocument

Purpose

Allows multiple output files from an single XSL transform. Also provides
routines to quickly load XML files without invoking XML validators as well as
utility methods to enable correct output formatting.

Appendix: Extension Objects

32 Developer’s Guide

Namespace

urn:WebWorks-XSLT-Extension-Document

Prefix

wwexsldoc

Method

wwexsldoc:Document(node-set nodeSet, string path, string
encoding, string method, string version, string indent, string
omit_xml_declaration, string standalone, string doctype_public,
string doctype_system, string cdata_section_elements, string
media_type):
Description—Writes the specified node set to a file at the location defined by
path. For information on additional parameters, please refer to XSL
documentation for the <xsl:output> element.

Returns—Nothing.

wwexsldoc:LoadXMLWithoutResolver(string uriAsString):
Description—Loads an XML file without resolving internal paths and
validation DTDs.

Returns—A node set.

wwexsldoc:MakeEmptyElement(node-set nodeSet):
Description—Converts a non-empty XML node to an empty node. Non-empty
XML nodes have an open and close element, as in:

Empty XML nodes are composed of a single element:

Returns—A node set contain a single empty XML node.

Appendix: Extension Objects

Developer’s Guide 33

Files

Purpose

Provides methods to detect file changes between conversions.

Namespace

urn:WebWorks-XSLT-Extension-Files

Prefix

wwfilesext

Method

wwfilesext:UpToDate(string path, string projectChecksum, string
groupID, string documentID, string actionChecksum):
Description—Determines if the requested file is up-to-date with respect to the
provided attributes.

Returns—Boolean.

FileSystem

Purpose

Allows XSL transforms to query and manipulate files and directories. Also
handles system path parsing and processing.

Namespace

urn:WebWorks-XSLT-Extension-FileSystem

Prefix

wwfilesystem

Appendix: Extension Objects

34 Developer’s Guide

Returns

Files XML Document.

Namespace

urn:WebWorks-Engine-Files-Schema

Prefix

wwfiles

Format

Files and their dependants.

 <wwfiles:File path="C:\alpha" type=""
checksum="632785563587599646:313802"
 projectchecksum="" groupID="" documentID=""
actionchecksum=""
 category="" use="" deploy="" />
 <wwfiles:File path="C:\beta" type=""
checksum="ABCEF0563587599646:26414"
 projectchecksum="" groupID="" documentID=""
actionchecksum=""
 category="" use="" deploy="">
 <wwfiles:Depends path="C:\alpha"
checksum="632785563587599646:313802"
 groupID="" documentID="" />
 </wwfiles:File>

Methods

wwfilesystem:Exists(string path):
Description—Determines if a file or directory exists at the given path.

Returns—Boolean.

wwfilesystem:DirectoryExists(string path):
Description—Determines if a directory exists at the given path. If a file exists
with the given path, this method will return false().

Appendix: Extension Objects

Developer’s Guide 35

Returns—Boolean.

wwfilesystem:FileExists(string path):
Description—Determines if a file exists at the given path. If directory exists
with the given path, this method will return false().

Returns—Boolean.

wwfilesystem:CreateDirectory(string path):
Description—Creates a directory with the given path. If the directory already
exists, the method will return false().

Returns—Boolean.

wwfilesystem:DeleteDirectory(string path):
Description—Deletes the directory with the given path.

Returns—Nothing.

wwfilesystem:DeleteFile(string path):
Description—Deletes the file with the given path.

Returns—Nothing.

wwfilesystem:GetFiles(string path):
Description—Returns an XML node set containing absolute file paths to all files
in the specified path. If the path specifies a file, a single file entry will be
returned. If the path specifies a directory, all file paths in the directory and their
children are returned.

Returns—Files XML document.

wwfilesystem:GetRelativeFiles(string path):
Description—Returns an XML node set containing relative file paths to all files
in the specified path. If the path specifies a file, a single file entry will be
returned. If the path specifies a directory, all file paths in the directory and their
children are returned.

Returns—Files XML document.

Appendix: Extension Objects

36 Developer’s Guide

wwfilesystem:CopyDirectoryFiles(string sourceDirectoryPath,
string destinationDirectoryPath):
Description—Copies all files from the source directory to the destination
directory. Destination files are reported as <FILE> elements. Source files are
reported as <Depends> elements for each destination file.

Returns—Files XML document.

wwfilesystem:CopyFile(string sourcePath, string
destinationPath):
Description—Copies the source file to the destination path. Destination files are
reported as <FILE> elements. Source files are reported as <Depends> elements
for each destination file.

Returns—Files XML document.

wwfilesystem:FilesEqual(string alphaPath, string betaPath):
Description—Compares the contents of two files to determine if they are equal.

Returns—Boolean.

wwfilesystem:AppendFileWithFile(string targetPath, string
sourcePath):
Description—Appends one file to another file.

Returns—Boolean.

wwfilesystem:GetDirectoryName(string path):
Description—Determines the directory prefix of the given path.

Returns—Directory path as string.

wwfilesystem:GetFileName(string path):
Description—Determines the name of the file with the directory prefix
removed.

Returns—File name as string.

wwfilesystem:GetExtension(string path):
Description—Determines the file extension for the given path.

Appendix: Extension Objects

Developer’s Guide 37

Returns—File extension as string.

wwfilesystem:GetFileNameWithoutExtension(string path):
Description—Determines the name of the file with the directory prefix and
extension removed.

Returns—Base file name as string.

wwfilesystem:GetWithExtensionReplaced(string path, string
extension):
Description—Replaces the current file extension with the provided one.

Returns—Path as string.

wwfilesystem:Combine(string path, string component1, string
component2, string component3, string component4, string
component5, string component6):
Description—Combines path components using the current system path
separator. Additionally, relative path components such as “.” and “..” are
resolved if possible.

Returns—Path as string.

wwfilesystem:GetChecksum(string path):
Description—Determines the checksum for the specified file.

Returns—Checksum as string.

wwfilesystem:ChecksumUpToDate(string path, string checksum):
Description—Compares the provided checksum with the current checksum.
This is a convenience method for XSL developers.

Returns—Boolean.

wwfilesystem:GetRelativeTo(string path, string anchorPath):
Description—Determines the relative path from the absolute anchor path to the
absolute destination path. May return an absolute path if no relative path exists.

Returns—Path as string.

Appendix: Extension Objects

38 Developer’s Guide

wwfilesystem:TranslateFileToEncoding(string sourceFilePath,
string sourceFileEncodingName, string destinationFilePath,
string destinationFileEncodingName):
Description—Opens a text file in one encoding and writes it out in another
encoding.

Returns—Boolean.

Fonts

Purpose

Answer questions about fonts that might affect format output.

Namespace

urn:WebWorks-XSLT-Extension-Fonts

Prefix

wwfonts

Method

wwfonts:UnicodeFont(string fontFamily):
Description—Determines if the specified font family is a Unicode font family.
Used to detect Symbol font families.

Returns—Boolean.

Imaging

Purpose

Enable processing of images within XSL transforms.

Appendix: Extension Objects

Developer’s Guide 39

Namespace

urn:WebWorks-XSLT-Extension-Imaging

Prefix

wwimaging

Returns

Files XML Document.

Namespace

urn:WebWorks-Imaging-Info

Prefix

wwimageinfo

Format

Returns information about a particular image file, including width and
height, image format, bit-depth, path on system, etc.

 <wwimageinfo:ImageInfo format="jpeg" width="200"
height="300"
 bitdepth="32" grayscale="false"
 path="C:\\image.jpg" />

Method

wwimaging:GetInfo(string imageFilePath):
Description—Retrieves image information for the specified file path.

Returns—Imaging Info XML Document

Appendix: Extension Objects

40 Developer’s Guide

wwimaging:Transform(string inputImageFilePath, string
outputImageFormat, int outputImageWidth, int
outputImageHeight, string outputImageFilePath):
Description—Creates a new version of an image with a different format or with
different dimensions.

Returns—Imaging Info XML Document

wwimaging:RasterizePostScript(string postScriptFilePath, int
renderHorizontalDPI, int renderVerticalDPI, int renderWidth, int
renderHeight, string targetImageFormat, int
targetImageColorDepth, bool targetImageGrayscale, bool
targetImageTransparent, bool targetImageInterlaced, int
targetImageQuality, string targetFilePath):
Description—Renders a PostScript file to a known image format such as BMP,
JPEG, PNG, or GIF.

Returns—Imaging Info XML Document

wwimaging:RasterizePostScript(string postScriptFilePath, bool
watermark, int renderHorizontalDPI, int renderVerticalDPI, int
renderWidth, int renderHeight, string targetImageFormat, int
targetImageColorDepth, bool targetImageGrayscale, bool
targetImageTransparent, bool targetImageInterlaced, int
targetImageQuality, string targetFilePath):
Description—Renders a PostScript file to a known image format such as BMP,
JPEG, PNG, or GIF.

Returns—Imaging Info XML Document

wwimaging:PostScriptToPDF(string postScriptFilePath, string
pdfJobSettings, string pdfFilePath):
Description—Converts the specified PostScript file to a PDF.

Returns—Boolean.

Appendix: Extension Objects

Developer’s Guide 41

Log

Purpose

Enables XSL transforms to report messag, warnings, and errors to the generation
log.

Namespace

urn:WebWorks-XSLT-Extension-Log

Prefix

wwlog

Method

wwlog:Message(string string1, string string2, string string3, string
string4):
Description—Records a message in the generation log.

Returns—Nothing.

wwlog:Warning(string string1, string string2, string string3, string
string4):
Description—Records a warning in the generation log.

Returns—Nothing.

wwlog:Error(string string1, string string2, string string3, string
string4):
Description—Records an error in the generation log.

Returns—Nothing.

Appendix: Extension Objects

42 Developer’s Guide

MultiSearchReplace

Purpose

Replaces multiple strings in a single operation.

Namespace

urn:WebWorks-XSLT-Extension-MultiSearchReplace

Prefix

wwmultisere

Method

wwmultisere:ReplaceAllInFile(string inputEncodingAsString,
string inputFilePath, string outputFilePath, node-set
replacements):
Description—Replaces strings in a text file with the specified input encoding
and writes the result to the output path with the specified output encoding.

Note: Not recommended for XML files. Use page templates instead.

Returns—Nothing.

wwmultisere:ReplaceAllInString(string input, node-set
replacements):
Description—Replaces strings in the given string and returns the result. Using
this method is much faster than performing multiple search/replace calls in XSL
substring methods.

Returns—String.

Appendix: Extension Objects

Developer’s Guide 43

Progress

Purpose

Reports progress during long lived XSL transforms.

Namespace

urn:WebWorks-XSLT-Extension-Progress

Prefix

wwprogress

Method

wwprogress:Abort():
Description—Checks to see if the user has requested to abort the current
operation.

Returns—Boolean.

wwprogress:Start(int totalSubSteps):
Description—Creates a new progress step with the given number of sub-steps.

Returns—Nothing.

wwprogress:End():
Description—Ends the current progress step.

Returns—Nothing.

wwprogress:SetStatus(string message):
Description—Sets the status bar for the current progress step.

Returns—Nothing.

Appendix: Extension Objects

44 Developer’s Guide

Project

Purpose

Provides access to resolved project rules. This operation could be performed
using XSL alone but is implemented as an extension object for better
performance.

Namespace

urn:WebWorks-XSLT-Extension-Project

Prefix

wwprojext

Returns

Project Rule XML.

Namespace

urn:WebWorks-Publish-Project

Prefix

wwproject

Appendix: Extension Objects

Developer’s Guide 45

Format

Follows the standard project format for rules.

 <Rule Key="Body" ChangeID="1234ADF0">
 <Options>
 <Option Name="split-priority" Value="none"
Source="Explicit" />
 <Option Name="toc-level" Value="none" Source="Explicit"
/>
 </Options>

 <Properties>
 <Property Name="background-color" Value="Violet"
Source="Explicit" />
 <Property Name="font-size" Value="18pt"
Source="Explicit" />
 </Properties>
 </Rule>

Method

wwprojext:GetDocumentsToGenerateChecksum():
Description—Returns an MD5 checksum of the document paths that the user
has requested to generated.

Returns—String.

wwprojext:GetProjectDataDirectoryPath():
Description—Returns the path to the project’s Data directory path.

Returns—String.

wwprojext:GetProjectFilesDirectoryPath():
Description—Returns the path to the project’s user files path.

Returns—String.

wwprojext:GetProjectFormatDirectoryPath():
Description—Returns the path to the current project target’s format override
directory path.

Appendix: Extension Objects

46 Developer’s Guide

Returns—String.

wwprojext:GetTargetDataDirectoryPath():
Description—Returns the path to the current project target’s Data directory
path.

Returns—String.

wwprojext:GetTargetOutputDirectoryPath():
Description—Returns the path to the current project target’s Output directory
path.

Returns—String.

wwprojext:GetConfigurationChangeID():
Description—Returns the current project target’s change ID.

Returns—String.

wwprojext:GetRule(string ruleTypeAsString, string ruleName):
Description—Returns the XML of the specified project rule with inherited
properties resolved.

Returns—Project Rule XML.

wwprojext:GetContextRule(string ruleTypeAsString, string
ruleName, string documentID, string uniqueID):
Description—Returns the XML of the specified rule with inherited properties
resolved and document overrides applied.

Returns—Project Rule XML.

wwprojext:GetOverrideRule(string ruleTypeAsString, string
ruleName, string documentID, string uniqueID):
Description—Returns the XML of the specified rule with only paragraph
specific and document override properties resolved.

Returns—Project Rule XML.

wwprojext:GetFormatName():
Description—Returns the name of the current project format.

Appendix: Extension Objects

Developer’s Guide 47

Returns—String.

wwprojext:GetFormatID():
Description—Returns the ID of the current project format.

Returns—String.

wwprojext:GetFormatSetting(string name, string defaultValue):
Description—Returns the value of the specified format setting. If a default value
is provided, it will be returned if no formatting setting is found.

Returns—String.

wwprojext:GetConditionIsPassThrough(string conditionName):
Description—Returns the pass-through status of a named condition for the
current project format.

Returns—Boolean.

wwprojext:GetGroupName(string groupID):
Description—Returns the name the specified group.

Returns—String.

wwprojext:GetGroupDataDirectoryPath(string groupID):
Description—Returns the path to the specified group’s Data directory.

Returns—String.

wwprojext:GetDocumentPath(string documentID):
Description—Returns the path to the specified document.

Returns—String.

wwprojext:GetDocumentDataDirectoryPath(string documentID):
Description—Returns the path to the specified document’s Data directory.

Returns—String.

wwprojext:GetDocumentGroupPath(string documentID):
Description—Returns a relative path of parent group names as a file path.

Appendix: Extension Objects

48 Developer’s Guide

Returns—String.

wwprojext:DocumentExtension(string extension):
Description—Determines if the provided extension is recognized by any
installed tool adapters.

Returns—Boolean.

StringUtilities

Purpose

Extend the available string processing methods to XSL to include message
formatting, specialized text escaping, regular expression operations, etc.

Namespace

urn:WebWorks-XSLT-Extension-StringUtilities

Prefix

wwstring

Method

wwstring:ToLower(string value):
Description—Converts the given string to lowercase.

Returns—String.

wwstring:ToUpper(string value):
Description—Converts the given string to uppercase.

Returns—String.

wwstring:Replace(string input, string search, string replacement):
Description—Replaces all occurrences of search in input with replacement.

Returns—String.

Appendix: Extension Objects

Developer’s Guide 49

wwstring:ReplaceWithExpression(string input, string
searchExpressionAsString, string replacement):
Description—Replaces all occurrences of searchExpressionAsString in input
with replacement.

Returns—String.

wwstring:CSSClassName(string styleName):
Description—Converts the given string into a valid CSS class name.

Returns—String.

wwstring:WebWorksHelpContextOrTopic(string value):
Description—Converts the given string into a valid WebWorks Help context or
topic string.

Note: WebWorks Help context and topic strings may only contain the characters
A-Z, a-z, 0-9, and _.

Returns—String.

wwstring:MD5Checksum(string value):
Description—Computes the MD5 checksum on the given string.

Returns—MD5 checksum as string.

wwstring:EscapeForXMLAttribute(string value):
Description—Escapes string assume it will be written as the value of an XML
attribute.

Returns—String.

wwstring:JavaScriptEncoding(string value):
Description—Converts all non-ASCII characters to Unicode escape sequences.
Also convert all ASCII characters less than 32 along with problematic escape
characters, i.e. \, to Unicode escape sequences.

Returns—String.

Appendix: Extension Objects

50 Developer’s Guide

wwstring:PalmReaderEncoding(string encodingName, string
value):
Description—Encodes string as required by Palm Reader.

Returns—String.

wwstring:Format(string format, string argument1, string
argument2, string argument3, string argument4, string
argument5, string argument6, string argument7, string
argument8, string argument9, string argument10*):
Description—Formats a message using the C# string formatter.

Returns—String.

Units

Purpose

Utility methods for extracting units and value from raw strings along with unit-
to-unit conversion routines.

Namespace

urn:WebWorks-XSLT-Extension-Units

Prefix

wwunits

Method

wwunits:NumericPrefix(string value):
Description—Extracts the numeric prefix of the given string.

Returns—String.

wwunits:UnitsSuffix(string value):
Description—Extracts the units suffix of the given string. Only returns a non-
zero length string of there is also a numeric prefix.

Appendix: Extension Objects

Developer’s Guide 51

Returns—String.

wwunits:Convert(double sourceValue, string sourceUnits, string
targetUnits):
Description—Converts a measurement from one set of units to another.

Returns—Number.

wwunits:RTFColor(string htmlColor):
Description—Converts a standard HTML/CSS color to an RTF color.

Returns—RTF color as string.

wwunits:CSSRGBColor(string htmlColor):
Description—Converts the given HTML/CSS color to a hex encoded CSS color.
Useful for converting named colors such as green to their hex equivalents.

Returns—Hex encoded CSS color as string.

wwunits:EncodingFromCodePage(int codePage):
Description—Determines the HTML encoding for a page given a Windows
code page value.

Returns—String.

URI

Purpose

Utility methods which convert to and from file paths and create absolute or
relative URIs.

Namespace

urn:WebWorks-XSLT-Extension-URI

Prefix

wwuri

Appendix: Extension Objects

52 Developer’s Guide

Method

wwunits:IsFile(string uriAsString):
Description—Determines if the supplied URI refers to the file system.

Returns—Boolean.

wwunits:AsFilePath(string uriAsString):
Description—Converts a file URI into a system file path.

Returns—File path as string.

wwunits:AsURI(string uriAsString):
Description—Converts file paths to URIs.

Returns—URI as string.

wwunits:GetRelativeTo(string uriAsString, string
anchorUriAsString):
Description—Converts an absolute URI into a relative URI.

Returns—URI as string.

wwunits:MakeAbsolute(string absoluteUriAsString, string
uriAsString):
Description—Converts a relative URI into an absolute URI. If the second
parameter is already an absolute URI, it will be returned unchanged.

Returns—URI as string.

Custom Extensions
The Microsoft XSL transform engine also supports custom extensions defined
with script blocks.

