Previous Next

Romance of the Heavens : The Scale of the Universe

The Scale of the Universe

How many stars are there? A glance at a photograph of star-clouds will tell at once that it is quite impossible to count them. The fine photograph reproduced in Figure 2 represents a very small patch of that pale-white belt, the Milky Way, which spans the sky at night. It is true that this is a particularly rich area of the Milky Way, but the entire belt of light has been resolved in this way into masses or clouds of stars. Astronomers have counted the stars in typical districts here and there, and from these partial counts we get some idea of the total number of stars. There are estimated to be between two and three thousand million stars.

Yet these stars are separated by inconceivable distances from each other, and it is one of the greatest triumphs of modern astronomy to have mastered, so far, the scale of the universe. For several centuries astronomers have known the relative distances from each other of the sun and the planets. If they could discover the actual distance of any one planet from any other, they could at once tell all the distances within the Solar System.

The sun is, on the latest measurements, at an average distance of 92,830,000 miles from the earth, for as the orbit of the earth is not a true circle, this distance varies. This means that in six months from now the earth will be right at the opposite side of its path round the sun, or 185,000,000 miles away from where it is now. Viewed or photographed from two positions so wide apart, the nearest stars show a tiny "shift" against the background of the most distant stars, and that is enough for the mathematician. He can calculate the distance of any star near enough to show this "shift." We have found that the nearest star to the earth, a recently discovered star, is twenty-five trillion miles away. Only thirty stars are known to be within a hundred trillion miles of us.

This way of measuring does not, however, take us very far away in the heavens. There are only a few hundred stars within five hundred trillion miles of the earth, and at that distance the "shift" of a star against the background (parallax, the astronomer calls it) is so minute that figures are very uncertain. At this point the astronomer takes up a new method. He learns the different types of stars, and then he is able to deduce more or less accurately the distance of a star of a known type from its faintness. He, of course, has instruments for gauging their light. As a result of twenty years work in this field, it is now known that the more distant stars of the Milky Way are at least a hundred thousand trillion (100,000,000,000,000,000) miles away from the sun.

Our sun is in a more or less central region of the universe, or a few hundred trillion miles from the actual centre. The remainder of the stars, which are all outside our Solar System, are spread out, apparently, in an enormous disc-like collection, so vast that even a ray of light, which travels at the rate of 186,000 miles a second, would take 50,000 years to travel from one end of it to the other. This, then is what we call our universe.